A
number system is the set of symbols used to express quantities as the basis for
counting, determining order, comparing amounts, performing calculation and representing
value
There
are two kinds of number system: -
1)     Non positional number system: - In
this number system, we have symbols such as I for 1, V for 5, X for 10,L for
50, C=100, D for 500 and  M=1000. Each
value represents the same value regardless of its position of a number.
Example: III = 1+1+1=3
                CX=100+10=101
2)     Positional number system: - In a position
a number system, there are only few symbols a called digit, the symbols represents
different values depending on the position they occupy in a number.
Example, In decimal number system,
245 
5 is in unit position             5
4 is in tenth position        
40
2 is in hundred position 200
                                    =
245
The position number systems are of
the following types
a)     
Decimal
number system      b) Binary Number system          
b)    
Octal
number system           d) Hexadecimal
number system
Decimal
number system: - The number system that uses base or radix as 10 is called
decimal number system. The digits used are 0,1,2,3,4,5,6,7,8,9. Each position
in decimal number system represents a power of base 10.
Binary
number system: - The number system that uses base or radix as 2 is called
Binary number system. The digits used are 0 and 1. Each position in binary
number system represents a power of base 2.
Octal
number system- The number system that uses base or radix as 8 is called Octal
number system. The digits used are 0,1,2,3,4,5,6,7. Each position in octal
number system represents a power of base 8.
Hexadecimal
number system: - The number system that uses base or radix as 16 is called hexadecimal
number system. There are 16 digits or symbols. They are 0,1,2,3,4,5,6,7,8,9 and
A,B,C,D,E and F. Each position in hexadecimal number system represents a power
of base 16.
| 
Binary | 
Decimal | 
Octal | 
Hexadecimal | 
| 
0000 | 
0 | 
0 | 
0 | 
| 
0001 | 
1 | 
1 | 
1 | 
| 
0010 | 
2 | 
2 | 
2 | 
| 
0011 | 
3 | 
3 | 
3 | 
| 
0100 | 
4 | 
4 | 
4 | 
| 
0101 | 
5 | 
5 | 
5 | 
| 
0110 | 
6 | 
6 | 
6 | 
| 
0111 | 
7 | 
7 | 
7 | 
| 
1000 | 
8 | 
8 | |
| 
1001 | 
9 | 
9 | |
| 
1010 | 
10 | 
A | |
| 
1011 | 
11 | 
B | |
| 
1100 | 
12 | 
C | |
| 
1101 | 
13 | 
D | |
| 
1110 | 
14 | 
E | |
| 
1111 | 
15 | 
F | 
Conversion
1)Decimal to binary
                
I.         
Convert
(19)10 into binary number system   answer
(10011)2
              
II.         
Convert
(45)10 into (?)2   answer
(101101)2
            
III.         
Convert
(87)10 into (?)2  answer (1010111)
2)Binary to decimal
                          
I.         
Convert
(1101)2 to (?)10 
=1*23+
1*22+0*21+1*20
=1*8+1*4+0+1
=13
(1101)2
= (13)10 
                        
II.         
Convert
 ()2 to (?)10   
3)     Decimal to octal
                
I.         
Convert
(45)10 to (?)8       
answer (55)
              
II.         
Convert
(123)10 to (?)8   answer
(173)
4)     Octal to decimal 
                          
I.         
Convert
(456)8 to (?)10
=4*82+5*81+6*80
=4*64
+ 5*8+6*1
=256
+40+6
=302
(456)8
= (302)10
                        
II.         
Convert
(3176)8 to (?)10
=3*83+1*82+7*81+6*80
=3*512+64+7*8+6*1
=1536+64+56+6
=1662
5)     Convert hexadecimal to decimal
number system
(3F7A)16
to (?)10
=3*163+F*162+7*161+A*160
=3*163+15*162+7*161+10*160
=3*4086+
15*256+7*16+10*1
=12288+3840+112+10
=16250
(3F7A)16
= (16250)10
(7DE)16
to (?)10
=7*162+D*161+E*160
=7*162+13*161+14*160
=7*256+13*16+14*1
=1792+208+14
=2014
(7DE)16=
(2014)10
6)     Convert decimal to hexadecimal
i)                
(333)10
into hexadecimal number.  Answer (14D)
ii)              
(123)10
into (?)16         ans= (7B)
7)     Convert binary to octal
i)                
Convert (1101010)2 into octal  
Here
Binary number                 001    
101      010
Hexadecimal equivalent     1        
5         2
 (1101010)2= (152)8
8)     Covert octal to binary
i)                
Convert
(562)8 into binary
Here
Octal
number                            5             6       2
Binary
number equivalent      101     110       
010
(562)8
= (101110010)2
ii)              
Convert
(375)8 into binary
 Here
Octal
number                            3         7      
5 
Binary
number equivalent      011      111   
101
(375)8
= (011111101)2
9)     Convert binary to hexadecimal
number system
i)                
Convert
(11010011)2 into hexadecimal
Here
Binary
number         1101  0011
Octal
equivalent          D       3   
 (1101001)2= (D3)16
ii)              
Convert
(111011)2 into into hexadecimal
Here
Binary
number       0011  1011
Hexadecimal
equivalent          3       B  
 (1101001)2= (3B)16
10)  Convert hexadecimal to binary
number system
i)                
Convert(2AB)16
into binary
Hexadecimal
number  2           A         B    
Binary
equivalent       0010   1010    
1011
(2AB)16=
(001010101011)2
ii)              
(COFFEE)16
into binary  
Here
Hexadecimal
number  C     0      
F         F        E         E
Binary
equivalent     1100  0000  1111
1111  1110   1110
(COFFEE)16=
(110000001111111111101110)2
Arithmetic operation on binary number
Different arithmetic operations such
as additions, subtraction, multiplication and division can be performed on binary
numbers.
Adding binary numbers
Rules
| 
0 + 0 = 0 | 
| 
0 +1= 1 | 
| 
1 +0=1 | 
| 
1 +1=10 ( carry 1) | 
 Note :
1+1+carry=1(carry1)
Adding 11101 and 01101
 11101                         1001                            1011                                        111
 01101                         1010                            1110                                        110
101010                                 10011                          11001                                      1101       
Subtracting binary number
Rules:  
| 
0 -0 = 0 | 
| 
0 -1= 1 ( borrow 1 from the left
  column.) | 
| 
1 -0=1  | 
| 
1 -1=0  | 
 01011             
111101            1011      1101001       11001010
       1001                    
-00010             -100101           -0110       - 
11110      -10011011       -  
10
01001              011000            0101        1001011      00101111        0111
Multiplying
binary number
| 
0 X 0 = 0 | 
| 
0 X 1= 0 | 
| 
1 X 0=0 | 
| 
1 X 1= 1  | 
10101                                                              1001
               x101                                             x  1010
            10101                                                              0000    
        00000x                                                            1001X                             
      10101xx                                                          0000XX    
      1101001                                                        1001XXX
                                                                              1011010    
Dividing
binary numbers
Complement
of binary number system: complement of the binary number system is the reverse
or just opposite of given umber system. In binary number system, there are two
complement.
a)    1's
complement
b)    2's
complement
1's complement: - 1's
complement of
binary number is just reverse or opposite of given which is obtained by
replacing 1 into 0 and 0 into 1.
Example 101001=010110
 
No comments:
Post a Comment